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Control Command Systems

plant (physical system to control)

Sensors actuators

controller
command double x[3] = {0, 0, 0};
L double nx[3];
double in;
+ while (1) {

2 in = acquire_input(); // uc
nx[0] = 0.9379#x[0]-0.0381*x[1]-0.0414%x[2]+0.0237in;
— Uc nx[1] = -0.0404xx[0]+0.968*x[1]1-0.0179%x[2]+0.0143*in; | V¢

nx[2] 0.0142%x[0]-0.0197*x[1]+0.9823*x [2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc

wait_next_clock_tick(); // a tick every 10 ms
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plant (physical system to control)

actuators

controller
double x[3] = {0, 0, 0};

double nx[3];

double in;

while (1) {
in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381%x[1]-0.0414*x[2]+0.0237*in;
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x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms
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critical system (human lifes at stake) = verification
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Stability Proofs

o Closed loop stability

3% u
P plant (state x,) P
+
d controller (state x,
Y — Uc rorer ( C) Ye
command y4 bounded = x. and x, bounded (hence y. and y, bounded)
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Invariants

A set of points is an (inductive) invariant if it:

X1

X0

contains initial state
((0,0) for instance)
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Example

On following code:
x0:=0; x1 :=0; x2 :=0;
while —1 < 0 do
in:=7(-1, 1);
x0' 1= x0; x1" := x1; x2' := x2;

x0 := 0.9379x0'—0.0381 x1'—0.0414 x2'+0.0237 in;

x1 := —0.0404 x0'4+0.968x1'—0.0179x2'+0.0143 in;

x2 := 0.0142x0'—0.0197 x1'+0.9823 x2'+0.0077 in;
od

our tool automatically proves:
xo| < 0.4236 A |x1| < 0.3371 A x| < 0.5251
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On following code:
x0:=0; x1 :=0; x2 :=0;
while —1 < 0 do
in:=7(-1, 1);
x0' 1= x0; x1" := x1; x2' := x2;

x0 := 0.9379x0'—0.0381 x1'—0.0414 x2'+0.0237 in; o
x1 := —0.0404 x0'4+0.968 x1'—0.0179 x2'+0.0143 in; . o
x2 := 0.0142x0'—0.0197 x1'+0.9823 x2'+0.0077 in; '

od

our tool automatically proves:

[xo] < 0.4236 A |x1| < 0.3371 A |x| < 0.5251

by producing the invariant:

6.2547x3 + 12.1868x7 + 3.8775x3 — 10.61xgx; — 2.4306x0x2 + 2.4182x1x2 < 1.0029
Axg <0.1795 A x2 < 0.1136 A xZ < 0.2757.
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Quadratic invariants

o Linear invariants commonly used in static analysis
are not well suited:

o at best costly;
o at worst no result.
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Quadratic Invariants

Remark

Reachable state space is usually not an ellipsoid.
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Remark

Reachable state space is usually not an ellipsoid.

Example
x0 := 0 and xkt1 := Axx + Buk where ||uk||cc < 1 and

A |0-92565 —0.0935 5. |t
"~ 10.00935  0.935 o

B —
- | o
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Quadratic Invariants

Remark

Reachable state space is usually not an ellipsoid.

Example
x0 := 0 and xkt1 := Axx + Buk where ||uk||cc < 1 and

A |0-92565 —0.0935 5. |t
"~ 10.00935  0.935 =

But remains reasonably close.
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Lyapunov Stability

Theorem

For Ac R"™" B € R"™P, the sequence

xp € R"
Xk+1 = AXk + Buk

is bounded for all u € (RP)" such that for all k € N, |[ug|oo < 1
if and only if there exists P € R"™" positive definite such that

P—ATPA=0

where M > 0 means that for all x € R™ x # 0= x' Mx > 0.
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Lyapunov Stability, Invariant

Invariant ellipsoid

Moreover, there exists a A > 0 such that
x remains in the ellipsoid {x eR" ’ xTPx< )\}.

In Computer Science Language

The property “x” Px < X" is a loop invariant.
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Lyapunov Stability, lllustration

{Ax + Bu | |uklloo < 1}
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Tools
To solve the Lyapunov equation P — ATPA > 0:

Semidefinite Programming

Minimize linear objective function of variables y;

under constraint
k

Ao+ yiAi =0
i=1

the A; are known matrices
and M > 0 means xTM x > 0 for all vector x.

o “Efficient” solvers exist;
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Tools
To solve the Lyapunov equation P — ATPA > 0:

Semidefinite Programming

Minimize linear objective function of variables y;

under constraint
k

Ao+ yiAi =0
i=1

the A; are known matrices
and M > 0 means xTM x > 0 for all vector x.

o “Efficient” solvers exist;

o Unknown matrices: Y can be decomposed as Zy,-,jE"’j;

L . i
= Lyapunov equation is numerically solvable.
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Shape of the Ellipsoid

o We look for P = 0 such that P— ATPA = 0.
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Shape of the Ellipsoid

o We look for P > 0 such that P — ATP A > 0.
o Then for \ such that x” P x < M\ is invariant.

o The ellipsoid {x | x" Px < A} should be “small".

X1 X1

o Y
o N

P
L

is better than

= various heuristics tried.
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Example

1 (condition number)
2 (preserving shape)

(in smallest sphere)
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Experimental Results

H. Bounds Reachable
Ex 2 1 1661,1795, 843,1288
n=4. 1 input 2 5.50,6.71,2.20,3.44 1.42,1.42,1.00,1.00
' 3 1.69,1.92,2.13,2.42
Ex. 3 Lead-lag | 1 60.93, 60.52
controller 2 36.55,35.50 3.97,20.00
n=2, 1 input 3 28.83,25.85
Ex. 4 LQG 1 1.26,1.26,1.26
regulator 2 1.21,1.23,1.06 0.32,0.24,0.22
n=3, 1 input 3 0.68,0.41,0.28
Ex. 5 Coupled 1 4980, 5061, 4768, 5693
mass system 2 6.37,6.20,6.07,9.57 2.79,2.73,3.50,3.30
n=4, 2 inputs 3 4.97,4.90,4.77,4.63
Ex. 6 1 253,261,251, 280, 286
Low-pass filter | 2 | 3.11,4.30,4.15,8.16,8.81 | 1.42,0.91,1.44,1.52,2.14
n=>5, 1 input 3 |221,1.10,1.87,1.98,2.83
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Experimental Results, Analysis Times

Heuristic | tp (s) tx (S) tvalid. (S) | trotar ()

Ex. 2 1 0.10 0.63 0.02 0.75
n=4. 1 input 2 0.21  0.37 0.01 0.59

' 3 033 0.22 0.01 0.56
Ex. 3 Discretized 1 0.08 0.47 0.03 0.60
lead-lag controller 2 0.13 0.45 0.02 0.60
n=2, 1 input 3 0.16 0.21 0.02 0.39
Ex. 4 Linear quadratic 1 0.08 0.33 0.02 0.43
gaussian regulator 2 0.14 0.29 0.02 0.45
n=3, 1 input 3 0.16 0.22 0.02 0.40
Ex. 5 Controller for a 1 0.09 0.76 0.03 0.88
coupled mass system 2 0.17 0.43 0.03 0.63
n=4, 2 inputs 3 0.27 0.23 0.03 0.53
Ex. 6 Butterworth 1 0.11 0.65 0.03 0.79
low-pass filter 2 0.22 0.37 0.02 0.61
n=>5, 1 input 3 0.56 0.25 0.02 0.83
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Floating Point Issues

For efficiency, use of floating point arithmetic, = rounding errors:
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Floating Point Issues
For efficiency, use of floating point arithmetic, = rounding errors:
o In the analyzer:

o Checking invariant {x ’ xT Px < )\} amounts to
positive definiteness of (for some 7 > 0 and X; > 0):

o

-B"™PA —-B"PB o0|-7]| O 0 —E" 0

—ATPA —A'PB 0 —P 0 0] »-1 0 0 O
— i
0 0 A 0 =0 0 0 1

0
A

o

o Done by bounding rounding errors in a Cholesky decomposition.

o Hence an efficient soundness check
(in O(n3) floating point operations for an n x n matrix).

o Proved in COQ (paper proof: 6 pages ~ 3,8 kloc of COQ).
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Floating Point Issues

@ In the analyzed controller:

Theorem
If xTPx <, ||uljoc <1 and (Ax + Bu)" P(Ax 4 Bu) < X, then

fi(Ax 4+ Bu)" Pfi(Ax + Bu) < (\/YJr Va+ b)2

with a and b (very small) constants computed from A, B and P.

Proved in COQ (paper proof: 4 pages ~~ 3,2 kloc of COQ).
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Open Directions

@ Invariant generation:

o Handling disjunctions in loop (e.g., saturations,
sometimes already works with policy iterations).
o Polynomial invariants.

o Closed loop system.

@ Other properties of interest for control theorists:

o Robustness (generalization of phase and gain margins).
o Performance (overshoot, convergence speed).
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Questions

Thank you for your attention!
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