Computing Quadratic Invariants

Pierre Roux^{1,2,3} Pierre-Loïc Garoche¹

October 4, 2014

¹ONERA – The French Aerospace Lab, Toulouse, France

²ISAE, University of Toulouse, Toulouse, France

³currently visiting CU Boulder

critical system (human lifes at stake)

critical system (human lifes at stake) \Rightarrow verification

Computing Quadratic Invariants

command y_d bounded $\Rightarrow x_c$ and x_p bounded

(hence y_c and y_p bounded)

command y_d bounded $\Rightarrow x_c$ and x_p bounded

(hence y_c and y_p bounded)

Intuitively: plane stays close from pilot orders.

command y_d bounded $\Rightarrow x_c$ and x_p bounded

(hence y_c and y_p bounded)

Intuitively: plane stays close from pilot orders.

command y_d bounded $\Rightarrow x_c$ and x_p bounded

(hence y_c and y_p bounded)

Intuitively: plane stays close from pilot orders.

Invariants

A set of points is an (inductive) invariant if it:

Invariants

A set of points is an (inductive) invariant if it:

Invariants

A set of points is an (inductive) invariant if it:

Example

On following code: $\times 0 := 0; \times 1 := 0; \times 2 := 0;$ while $-1 \le 0$ do in := ?(-1, 1); $\times 0' := \times 0; \times 1' := \times 1; \times 2' := \times 2;$ $\times 0 := 0.9379 \times 0' - 0.0381 \times 1' - 0.0414 \times 2' + 0.0237$ in; $\times 1 := -0.0404 \times 0' + 0.968 \times 1' - 0.0179 \times 2' + 0.0143$ in; $\times 2 := 0.0142 \times 0' - 0.0197 \times 1' + 0.9823 \times 2' + 0.0077$ in; od

our tool automatically proves:

 $|x_0| \leq 0.4236 \land |x_1| \leq 0.3371 \land |x_2| \leq 0.5251$

our tool automatically proves:

 $|x_0| \leq 0.4236 \land |x_1| \leq 0.3371 \land |x_2| \leq 0.5251$

by producing the invariant:

$$\begin{split} & 6.2547 x_0^2 + 12.1868 x_1^2 + 3.8775 x_2^2 - 10.61 x_0 x_1 - 2.4306 x_0 x_2 + 2.4182 x_1 x_2 \leq 1.0029 \\ & \wedge x_0^2 \leq 0.1795 \wedge x_1^2 \leq 0.1136 \wedge x_2^2 \leq 0.2757. \end{split}$$

- Linear invariants commonly used in static analysis are not well suited:
 - at best costly;
 - at worst no result.

- Linear invariants commonly used in static analysis are not well suited:
 - at best costly;
 - at worst no result.

- Linear invariants commonly used in static analysis are not well suited:
 - at best costly;
 - at worst no result.

- Linear invariants commonly used in static analysis are not well suited:
 - at best costly;
 - at worst no result.
- Control theorists know for long that **quadratic invariants** are a good fit for linear systems.

- Linear invariants commonly used in static analysis are not well suited:
 - at best costly;
 - at worst no result.
- Control theorists know for long that **quadratic invariants** are a good fit for linear systems.

Remark

Reachable state space is usually **not** an ellipsoid.

Remark

Reachable state space is usually not an ellipsoid.

Example

 $x_0 := 0$ and $x_{k+1} := Ax_k + Bu_k$ where $\|u_k\|_\infty \le 1$ and

Remark

Reachable state space is usually not an ellipsoid.

Example

$$x_0 := 0$$
 and $x_{k+1} := Ax_k + Bu_k$ where $\|u_k\|_\infty \leq 1$ and

But remains reasonably close.

Lyapunov Stability

Theorem

For $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, the sequence

$$\begin{cases} x_0 \in \mathbb{R}^n \\ x_{k+1} = Ax_k + Bu_k \end{cases}$$

is bounded for all $u \in (\mathbb{R}^p)^{\mathbb{N}}$ such that for all $k \in \mathbb{N}$, $||u_k||_{\infty} \leq 1$ if and only if there exists $P \in \mathbb{R}^{n \times n}$ positive definite such that

$$P - A^T P A \succ 0$$

where $M \succ 0$ means that for all $x \in \mathbb{R}^n$: $x \neq 0 \Rightarrow x^T M x > 0$.

Lyapunov Stability, Invariant

Invariant ellipsoid

Moreover, there exists a $\lambda > 0$ such that x remains in the ellipsoid $\{x \in \mathbb{R}^n \mid x^T P x \le \lambda\}$.

In Computer Science Language

The property " $x^T P x \leq \lambda$ " is a **loop invariant**.

Tools

To solve the Lyapunov equation $P - A^T P A \succ 0$:

Semidefinite Programming

Minimize linear objective function of variables y_i under constraint

$$A_0 + \sum_{i=1}^{\kappa} y_i A_i \succeq 0$$

the A_i are known matrices and $M \succeq 0$ means $x^T M x \ge 0$ for all vector x.

• "Efficient" solvers exist;

Tools

To solve the Lyapunov equation $P - A^T P A \succ 0$:

Semidefinite Programming

Minimize linear objective function of variables y_i under constraint

$$A_0 + \sum_{i=1}^{\kappa} y_i A_i \succeq 0$$

the A_i are known matrices and $M \succeq 0$ means $x^T M x \ge 0$ for all vector x.

- "Efficient" solvers exist;
- Unknown matrices: Y can be decomposed as $\sum_{i,j} y_{i,j} E^{i,j}$;

Tools

To solve the Lyapunov equation $P - A^T P A \succ 0$:

Semidefinite Programming

Minimize linear objective function of variables y_i under constraint

$$A_0 + \sum_{i=1}^{\kappa} y_i A_i \succeq 0$$

the A_i are known matrices and $M \succeq 0$ means $x^T M x \ge 0$ for all vector x.

- "Efficient" solvers exist;
- Unknown matrices: Y can be decomposed as $\sum_{i,j} y_{i,j} E^{i,j}$;
- \Rightarrow Lyapunov equation is numerically solvable.

Shape of the Ellipsoid

• We look for $P \succ 0$ such that $P - A^T P A \succ 0$.

Shape of the Ellipsoid

- We look for $P \succ 0$ such that $P A^T P A \succ 0$.
- Then for λ such that $x^T P x \leq \lambda$ is invariant.
- The ellipsoid $\{x \mid x^T P x \leq \lambda\}$ should be "small".

 \Rightarrow various heuristics tried.

Example

1 (condition number)

2 (preserving shape)

3 (in smallest sphere)

Computing Quadratic Invariants

Experimental Results

	Η.	Bounds	Reachable		
Ex. 2 n=4, 1 input	1	1661, 1795, 843, 1288			
	2	5.50, 6.71, 2.20, 3.44	1.42, 1.42, 1.00, 1.00		
	3	1.69, 1.92, 2.13, 2.42			
Ex. 3 Lead-lag	1	60.93, 60.52			
controller	2	36.55, 35.50	3.97, 20.00		
n=2, 1 input	3	28.83, 25.85			
Ex. 4 LQG	1	1.26, 1.26, 1.26			
regulator	2	1.21, 1.23, 1.06	0.32, 0.24, 0.22		
n $=3$, 1 input	3	0.68, 0.41, 0.28			
Ex. 5 Coupled	1	4980, 5061, 4768, 5693			
mass system	2	6.37, 6.20, 6.07, 9.57	2.79, 2.73, 3.50, 3.30		
n=4, 2 inputs	3	4.97, 4.90, 4.77, 4.63			
Ex. 6	1	253, 261, 251, 280, 286			
Low-pass filter	2	3.11, 4.30, 4.15, 8.16, 8.81	1.42, 0.91, 1.44, 1.52, 2.14		
n=5, 1 input	3	2.21, 1.10, 1.87, 1.98, 2.83			

Experimental Results, Analysis Times

	Heuristic	t_P (s)	t_{λ} (s)	t _{valid.} (s)	<i>t_{total}</i> (s)
Ev. 0	1	0.10	0.63	0.02	0.75
$\Box X. Z$	2	0.21	0.37	0.01	0.59
n=4, 1 mput	3	0.33	0.22	0.01	0.56
Ex. 3 Discretized	1	0.08	0.47	0.03	0.60
lead-lag controller	2	0.13	0.45	0.02	0.60
n=2, 1 input	3	0.16	0.21	0.02	0.39
Ex. 4 Linear quadratic	1	0.08	0.33	0.02	0.43
gaussian regulator	2	0.14	0.29	0.02	0.45
n=3, 1 input	3	0.16	0.22	0.02	0.40
Ex. 5 Controller for a	1	0.09	0.76	0.03	0.88
coupled mass system	2	0.17	0.43	0.03	0.63
n=4, 2 inputs	3	0.27	0.23	0.03	0.53
Ex. 6 Butterworth	1	0.11	0.65	0.03	0.79
low-pass filter	2	0.22	0.37	0.02	0.61
n=5, 1 input	3	0.56	0.25	0.02	0.83

On an Intel Core2 @ 2.66GHz.

Computing Quadratic Invariants

Floating Point Issues

For efficiency, use of floating point arithmetic, \Rightarrow rounding errors:

Floating Point Issues

For efficiency, use of floating point arithmetic, \Rightarrow rounding errors:

- In the analyzer:
 - Checking invariant {x | x^TPx ≤ λ} amounts to positive definiteness of (for some τ ≥ 0 and λ_i ≥ 0):

$$\begin{bmatrix} -A^{T}PA & -A^{T}PB & 0\\ -B^{T}PA & -B^{T}PB & 0\\ 0 & 0 & \lambda \end{bmatrix} - \tau \begin{bmatrix} -P & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & \lambda \end{bmatrix} - \sum_{i=0}^{p-1} \lambda_{i} \begin{bmatrix} 0 & 0 & 0\\ 0 & -E^{i,i} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

- Done by bounding rounding errors in a Cholesky decomposition.
- Hence an efficient soundness check (in $O(n^3)$ floating point operations for an $n \times n$ matrix).
- Proved in COQ (paper proof: 6 pages → 3,8 kloc of COQ).

Floating Point Issues

In the analyzed controller:

Theorem If $x^T P x \le \lambda$, $||u||_{\infty} \le 1$ and $(Ax + Bu)^T P(Ax + Bu) \le \lambda'$, then $fl(Ax + Bu)^T P fl(Ax + Bu) \le (\sqrt{\lambda'} + \sqrt{\lambda}a + b)^2$

with a and b (very small) constants computed from A, B and P.

Proved in COQ (paper proof: 4 pages \rightsquigarrow 3,2 kloc of COQ).

- Invariant generation:
 - Handling disjunctions in loop (e.g., saturations, sometimes already works with policy iterations).
 - Polynomial invariants.

- Closed loop system.
- Other properties of interest for control theorists:
 - Robustness (generalization of phase and gain margins).
 - Performance (overshoot, convergence speed).

Thank you for your attention!

Computing Quadratic Invariants