Computing Quadratic Invariants

2,3

Pierre Roux! Pierre-Loic Garoche!

October 4, 2014
LONERA - The French Aerospace Lab, Toulouse, France
2ISAE, University of Toulouse, Toulouse, France

3currently visiting CU Boulder

Control Command Systems

plant (physical system to control)

command

Computing Quadratic Invariants

Control Command Systems

plant (physical system to control)

Sensors actuators

controller
command

—X Uc Ye

Computing Quadratic Invariants

Control Command Systems

plant (physical system to control)

Sensors actuators

controller
command double x[3] = {0, 0, 0};
L double nx[3];
double in;
+ while (1) {

2 in = acquire_input(); // uc
nx[0] = 0.9379#x[0]-0.0381*x[1]-0.0414%x[2]+0.0237in;
— Uc nx[1] = -0.0404xx[0]+0.968*x[1]1-0.0179%x[2]+0.0143*in; | V¢

nx[2] 0.0142%x[0]-0.0197*x[1]+0.9823*x [2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc

wait_next_clock_tick(); // a tick every 10 ms

Computing Quadratic Invariants
1

Control Command Systems

plant (physical system to control)

Sensors actuators

controller
command double x[3] = {0, 0, 0};
L double nx[3];
double in;
+ while (1) {

2 in = acquire_input(); // uc
nx[0] = 0.9379#x[0]-0.0381*x[1]-0.0414%x[2]+0.0237in;
— Uc nx[1] = -0.0404xx[0]+0.968*x[1]1-0.0179%x[2]+0.0143*in; | V¢

nx[2] 0.0142%x[0]-0.0197*x[1]+0.9823*x [2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc

wait_next_clock_tick(); // a tick every 10 ms

Computing Quadratic Invariants
1

Control Command Systems

plant (physical system to control)

Sensors actuators

controller
command double x[3] = {0, 0, 0};
L double nx[3];
double in;
+ while (1) {

2 in = acquire_input(); // uc
nx[0] = 0.9379#x[0]-0.0381*x[1]-0.0414%x[2]+0.0237+in;
— Uc nx[1] = -0.0404xx[0]+0.968*x[1]1-0.0179%x[2]+0.0143*in; | V¢

nx[2] 0.0142%x[0]-0.0197*x[1]+0.9823*x [2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc

wait_next_clock_tick(); // a tick every 10 ms

Computing Quadratic Invariants
1

Control Command Systems

plant (physical system to control)

Sensors actuators

controller
command double x[3] = {0, 0, 0};
L double nx[3];
double in;
+ while (1) {

2 in = acquire_input(); // uc
nx[0] = 0.9379%x[0]-0.0381%x[1]-0.0414%x[2]+0.0237*in;
— Uc nx[1] = -0.0404%x[0]+0.968*x[1]-0.0179*x [2]+0.0143xin; | V¢

nx[2] 0.0142%x[0]1-0.0197*x[1]+0.9823%x [2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc

wait_next_clock_tick(); // a tick every 10 ms

Computing Quadratic Invariants
1

Control Command Systems

plant (physical system to control)

Sensors actuators

controller
command double x[3] = {0, 0, 0};
L double nx[3];
double in;
+ while (1) {

2 in = acquire_input(); // uc
nx[0] = 0.9379#x[0]-0.0381*x[1]-0.0414%x[2]+0.0237in;
— Uc nx[1] = -0.0404xx[0]+0.968*x[1]1-0.0179%x[2]+0.0143*in; | V¢

nx[2] 0.0142%x[0]-0.0197*x[1]+0.9823*x [2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc

wait_next_clock_tick(); // a tick every 10 ms

Computing Quadratic Invariants
1

Control Command Systems

Sensors

command

plant (physical system to control)

actuators

controller
double x[3] = {0, 0, 0};

double nx[3];

double in;

while (1) {
in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381%x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404xx[0]+0.968%x[1]-0.0179*x [2]+0.0143%in;
nx[2] = 0.0142%x[0]-0.0197*x[1]+0.9823%x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

Ye

Computing Quadratic Invariants

Control Command Systems

Sensors

command

plant (physical system to control)

actuators

controller
double x[3] = {0, 0, 0};

double nx[3];

double in;

while (1) {
in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381%x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404xx[0]+0.968%x[1]-0.0179*x [2]+0.0143%in;
nx[2] = 0.0142%x[0]-0.0197*x[1]+0.9823%x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

critical system (human lifes at stake) = verification

Ye

Computing Quadratic Invariants

Stability Proofs

o Closed loop stability

3% u
P plant (state x,) P
+
d controller (state x,
Y — Uc rorer (C) Ye
command y4 bounded = x. and x, bounded (hence y. and y, bounded)

Computing Quadratic Invariants

Stability Proofs

o Closed loop stability

Yy u
P plant (state x,) P
+
Yd controller (state x.)
_ Uc Ye
command y4 bounded = x. and x, bounded (hence y. and y, bounded)

Intuitively: plane stays close from pilot orders.

Computing Quadratic Invariants

Stability Proofs

o Closed loop stability

% u
P plant (state x,) P

+

Yd controller (state x.)
— Uc Ye

command y4 bounded = x. and x, bounded (hence y. and y, bounded)

Intuitively: plane stays close from pilot orders.

o Open loop stability

_— controller (state x, —
Uc (C) Ye
input u. bounded = x. bounded (hence y. bounded)

Computing Quadratic Invariants

Stability Proofs

o Closed loop stability

% u
P plant (state x,) P

+

Yd controller (state x.)
— Uc Ye

command y4 bounded = x. and x, bounded (hence y. and y, bounded)

Intuitively: plane stays close from pilot orders.

o Open loop stability

_— controller (state x, —
Uc (C) Ye
input u. bounded = x. bounded (hence y. bounded)

Computing Quadratic Invariants
WAT]

Invariants

A set of points is an (inductive) invariant if it:

X1

X0

contains initial state
((0,0) for instance)

Computing Quadratic Invariants

Invariants

A set of points is an (inductive) invariant if it:

X1 X1
X0 X0
X
contains initial state is stable in one step
((0,0) for instance) (loop body)

Computing Quadratic Invariants

Invariants

A set of points is an (inductive) invariant if it:

X1 X1
X0 X0
X
contains initial state is stable in one step
((0,0) for instance) (loop body)

Computing Quadratic Invariants

Example

On following code:
x0:=0; x1 :=0; x2 :=0;
while —1 < 0 do
in:=7(-1, 1);
x0' 1= x0; x1" := x1; x2' := x2;

x0 := 0.9379x0'—0.0381 x1'—0.0414 x2'+0.0237 in;

x1 := —0.0404 x0'4+0.968x1'—0.0179x2'+0.0143 in;

x2 := 0.0142x0'—0.0197 x1'+0.9823 x2'+0.0077 in;
od

our tool automatically proves:
xo| < 0.4236 A |x1| < 0.3371 A x| < 0.5251

Computing Quadratic Invariants

On following code:
x0:=0; x1 :=0; x2 :=0;
while —1 < 0 do
in:=7(-1, 1);
x0' 1= x0; x1" := x1; x2' := x2;

x0 := 0.9379x0'—0.0381 x1'—0.0414 x2'+0.0237 in; o
x1 := —0.0404 x0'4+0.968 x1'—0.0179 x2'+0.0143 in; . o
x2 := 0.0142x0'—0.0197 x1'+0.9823 x2'+0.0077 in; '

od

our tool automatically proves:

[xo] < 0.4236 A |x1| < 0.3371 A |x| < 0.5251

by producing the invariant:

6.2547x3 + 12.1868x7 + 3.8775x3 — 10.61xgx; — 2.4306x0x2 + 2.4182x1x2 < 1.0029
Axg <0.1795 A x2 < 0.1136 A xZ < 0.2757.

Computing Quadratic Invariants

Quadratic invariants

o Linear invariants commonly used in static analysis
are not well suited:

o at best costly;
o at worst no result.

Computing Quadratic Invariants
(9

Quadratic invariants

o Linear invariants commonly used in static analysis
are not well suited:

o at best costly;
o at worst no result.

X1

X0

Computing Quadratic Invariants

Quadratic invariants

o Linear invariants commonly used in static analysis
are not well suited:

o at best costly;
o at worst no result.

X1

X0

Computing Quadratic Invariants

Quadratic invariants

o Linear invariants commonly used in static analysis

are not well suited:

o at best costly;

o at worst no result.

o Control theorists know for long that quadratic invariants

are a good fit for linear systems.

X1

X0

X1

X0

Computing Quadratic Invariants

Quadratic invariants

o Linear invariants commonly used in static analysis

are not well suited:

o at best costly;

o at worst no result.

o Control theorists know for long that quadratic invariants

are a good fit for linear systems.

X1

X0

X1

21 D)

/

Computing Quadratic Invariants

Quadratic Invariants

Remark

Reachable state space is usually not an ellipsoid.

Computing Quadratic Invariants

Quadratic Invariants

Remark

Reachable state space is usually not an ellipsoid.

Example
x0 := 0 and xkt1 := Axx + Buk where ||uk||cc < 1 and

A |0-92565 —0.0935 5. |t
"~ 10.00935 0.935 o

B —
- | o

Computing Quadratic Invariants

Quadratic Invariants

Remark

Reachable state space is usually not an ellipsoid.

Example
x0 := 0 and xkt1 := Axx + Buk where ||uk||cc < 1 and

A |0-92565 —0.0935 5. |t
"~ 10.00935 0.935 =

But remains reasonably close.

Computing Quadratic Invariants

Lyapunov Stability

Theorem

For Ac R"™" B € R"™P, the sequence

xp € R"
Xk+1 = AXk + Buk

is bounded for all u € (RP)" such that for all k € N, |[ug|oo < 1
if and only if there exists P € R"™" positive definite such that

P—ATPA=0

where M > 0 means that for all x € R™ x # 0= x' Mx > 0.

Computing Quadratic Invariants

8/18

Lyapunov Stability, Invariant

Invariant ellipsoid

Moreover, there exists a A > 0 such that
x remains in the ellipsoid {x eR" ’ xTPx<)\}.

In Computer Science Language

The property “x” Px < X" is a loop invariant.

Computing Quadratic Invariants

Lyapunov Stability, lllustration

{Ax + Bu | |uklloo < 1}

Computing Quadratic Invariants

10 /1

Tools
To solve the Lyapunov equation P — ATPA > 0:

Semidefinite Programming

Minimize linear objective function of variables y;

under constraint
k

Ao+ yiAi =0
i=1

the A; are known matrices
and M > 0 means xTM x > 0 for all vector x.

o “Efficient” solvers exist;

Computing Quadratic Invariants

Tools
To solve the Lyapunov equation P — ATPA > 0:

Semidefinite Programming

Minimize linear objective function of variables y;

under constraint
k

Ao+ yiAi =0
i=1

the A; are known matrices
and M > 0 means xTM x > 0 for all vector x.

o “Efficient” solvers exist;

@ Unknown matrices: Y can be decomposed as E vijE"™;
isJ

Computing Quadratic Invariants

Tools
To solve the Lyapunov equation P — ATPA > 0:

Semidefinite Programming

Minimize linear objective function of variables y;

under constraint
k

Ao+ yiAi =0
i=1

the A; are known matrices
and M > 0 means xTM x > 0 for all vector x.

o “Efficient” solvers exist;

o Unknown matrices: Y can be decomposed as Zy,-,jE"’j;

L . i
= Lyapunov equation is numerically solvable.

Computing Quadratic Invariants

Shape of the Ellipsoid

o We look for P = 0 such that P— ATPA = 0.

Computing Quadratic Invariants

Shape of the Ellipsoid

o We look for P > 0 such that P — ATP A > 0.
o Then for \ such that x” P x < M\ is invariant.

o The ellipsoid {x | x" Px < A} should be “small".

X1 X1

o Y
o N

P
L

is better than

= various heuristics tried.

Computing Quadratic Invariants

Example

1 (condition number)
2 (preserving shape)

(in smallest sphere)

Computing Quadratic Invariants
13 /18

Experimental Results

H. Bounds Reachable
Ex 2 1 1661,1795, 843,1288
n=4. 1 input 2 5.50,6.71,2.20,3.44 1.42,1.42,1.00,1.00
' 3 1.69,1.92,2.13,2.42
Ex. 3 Lead-lag | 1 60.93, 60.52
controller 2 36.55,35.50 3.97,20.00
n=2, 1 input 3 28.83,25.85
Ex. 4 LQG 1 1.26,1.26,1.26
regulator 2 1.21,1.23,1.06 0.32,0.24,0.22
n=3, 1 input 3 0.68,0.41,0.28
Ex. 5 Coupled 1 4980, 5061, 4768, 5693
mass system 2 6.37,6.20,6.07,9.57 2.79,2.73,3.50,3.30
n=4, 2 inputs 3 4.97,4.90,4.77,4.63
Ex. 6 1 253,261,251, 280, 286
Low-pass filter | 2 | 3.11,4.30,4.15,8.16,8.81 | 1.42,0.91,1.44,1.52,2.14
n=>5, 1 input 3 |221,1.10,1.87,1.98,2.83

Computing Quadratic Invariants
14 / 18

Experimental Results, Analysis Times

Heuristic | tp (s) tx (S) tvalid. (S) | trotar ()

Ex. 2 1 0.10 0.63 0.02 0.75
n=4. 1 input 2 0.21 0.37 0.01 0.59

' 3 033 0.22 0.01 0.56
Ex. 3 Discretized 1 0.08 0.47 0.03 0.60
lead-lag controller 2 0.13 0.45 0.02 0.60
n=2, 1 input 3 0.16 0.21 0.02 0.39
Ex. 4 Linear quadratic 1 0.08 0.33 0.02 0.43
gaussian regulator 2 0.14 0.29 0.02 0.45
n=3, 1 input 3 0.16 0.22 0.02 0.40
Ex. 5 Controller for a 1 0.09 0.76 0.03 0.88
coupled mass system 2 0.17 0.43 0.03 0.63
n=4, 2 inputs 3 0.27 0.23 0.03 0.53
Ex. 6 Butterworth 1 0.11 0.65 0.03 0.79
low-pass filter 2 0.22 0.37 0.02 0.61
n=>5, 1 input 3 0.56 0.25 0.02 0.83

Computing Quadratic Invariants

15 / 18

Floating Point Issues

For efficiency, use of floating point arithmetic, = rounding errors:

Computing Quadratic Invariants

16 / 18

Floating Point Issues
For efficiency, use of floating point arithmetic, = rounding errors:
o In the analyzer:

o Checking invariant {x ’ xT Px <)\} amounts to
positive definiteness of (for some 7 > 0 and X; > 0):

o

-B"™PA —-B"PB o0|-7]| O 0 —E" 0

—ATPA —A'PB 0 —P 0 0] »-1 0 0 O
— i
0 0 A 0 =0 0 0 1

0
A

o

o Done by bounding rounding errors in a Cholesky decomposition.

o Hence an efficient soundness check
(in O(n3) floating point operations for an n x n matrix).

o Proved in COQ (paper proof: 6 pages ~ 3,8 kloc of COQ).

Computing Quadratic Invariants
1 8

Floating Point Issues

@ In the analyzed controller:

Theorem
If xTPx <, ||uljoc <1 and (Ax + Bu)" P(Ax 4 Bu) < X, then

fi(Ax 4+ Bu)" Pfi(Ax + Bu) < (\/YJr Va+ b)2

with a and b (very small) constants computed from A, B and P.

Proved in COQ (paper proof: 4 pages ~~ 3,2 kloc of COQ).

Computing Quadratic Invariants
17 /18

Open Directions

@ Invariant generation:

o Handling disjunctions in loop (e.g., saturations,
sometimes already works with policy iterations).
o Polynomial invariants.

o Closed loop system.

@ Other properties of interest for control theorists:

o Robustness (generalization of phase and gain margins).
o Performance (overshoot, convergence speed).

Computing Quadratic Invariants

Questions

Thank you for your attention!

Computing Quadratic Invariants

19 /19

