
Computing Quadratic Invariants

Pierre Roux1,2,3 Pierre-Loïc Garoche1

October 4, 2014

1ONERA – The French Aerospace Lab, Toulouse, France

2ISAE, University of Toulouse, Toulouse, France

3currently visiting CU Boulder

Control Command Systems
plant (physical system to control)

Image: public domain

controller

double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

− yc

actuators

critical system (human lifes at stake)

⇒ verification

2 / 18
Computing Quadratic Invariants

N

Control Command Systems
plant (physical system to control)

Image: public domain

controller

double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

− yc

actuators

critical system (human lifes at stake)

⇒ verification

2 / 18
Computing Quadratic Invariants

N

Control Command Systems
plant (physical system to control)

Image: public domain

controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

− yc

actuators

critical system (human lifes at stake)

⇒ verification

2 / 18
Computing Quadratic Invariants

N

Control Command Systems
plant (physical system to control)

Image: public domain

controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

− yc

actuators

critical system (human lifes at stake)

⇒ verification

2 / 18
Computing Quadratic Invariants

N

Control Command Systems
plant (physical system to control)

Image: public domain

controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

− yc

actuators

critical system (human lifes at stake)

⇒ verification

2 / 18
Computing Quadratic Invariants

N

Control Command Systems
plant (physical system to control)

Image: public domain

controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

− yc

actuators

critical system (human lifes at stake)

⇒ verification

2 / 18
Computing Quadratic Invariants

N

Control Command Systems
plant (physical system to control)

Image: public domain

controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

− yc

actuators

critical system (human lifes at stake)

⇒ verification

2 / 18
Computing Quadratic Invariants

N

Control Command Systems
plant (physical system to control)

Image: public domain

controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

− yc

actuators

critical system (human lifes at stake)

⇒ verification

2 / 18
Computing Quadratic Invariants

N

Control Command Systems
plant (physical system to control)

Image: public domain

controller
double x[3] = {0, 0, 0};
double nx[3];
double in;
while (1) {

in = acquire_input(); // uc
nx[0] = 0.9379*x[0]-0.0381*x[1]-0.0414*x[2]+0.0237*in;
nx[1] = -0.0404*x[0]+0.968*x[1]-0.0179*x[2]+0.0143*in;
nx[2] = 0.0142*x[0]-0.0197*x[1]+0.9823*x[2]+0.0077*in;
x[0] = nx[0]; x[1] = nx[1]; x[2] = nx[2];
send_output(x); // yc
wait_next_clock_tick(); // a tick every 10 ms

}

sensors

+

uc

command

Image: Thomasione (CC by-sa)

− yc

actuators

critical system (human lifes at stake) ⇒ verification
2 / 18

Computing Quadratic Invariants
N

Stability Proofs
Closed loop stability

plant (state xp)

controller (state xc)

yp

+

uc
yd − yc

up

command yd bounded ⇒ xc and xp bounded (hence yc and yp bounded)

Intuitively: plane stays close from pilot orders.

Open loop stability
controller (state xc)uc yc

input uc bounded ⇒ xc bounded (hence yc bounded)

“Intuitively”: no arithmetic overflow.

3 / 18
Computing Quadratic Invariants

N

Stability Proofs
Closed loop stability

plant (state xp)

controller (state xc)

yp

+

uc
yd − yc

up

command yd bounded ⇒ xc and xp bounded (hence yc and yp bounded)

Intuitively: plane stays close from pilot orders.

Open loop stability
controller (state xc)uc yc

input uc bounded ⇒ xc bounded (hence yc bounded)

“Intuitively”: no arithmetic overflow.

3 / 18
Computing Quadratic Invariants

N

Stability Proofs
Closed loop stability

plant (state xp)

controller (state xc)

yp

+

uc
yd − yc

up

command yd bounded ⇒ xc and xp bounded (hence yc and yp bounded)

Intuitively: plane stays close from pilot orders.

Open loop stability
controller (state xc)uc yc

input uc bounded ⇒ xc bounded (hence yc bounded)

“Intuitively”: no arithmetic overflow.

3 / 18
Computing Quadratic Invariants

N

Stability Proofs
Closed loop stability

plant (state xp)

controller (state xc)

yp

+

uc
yd − yc

up

command yd bounded ⇒ xc and xp bounded (hence yc and yp bounded)

Intuitively: plane stays close from pilot orders.

Open loop stability
controller (state xc)uc yc

input uc bounded ⇒ xc bounded (hence yc bounded)

“Intuitively”: no arithmetic overflow.
3 / 18

Computing Quadratic Invariants
N

Invariants
A set of points is an (inductive) invariant if it:

x0

x1

contains initial state
((0, 0) for instance)

x0

x1

is stable in one step
(loop body)

4 / 18
Computing Quadratic Invariants

N

Invariants
A set of points is an (inductive) invariant if it:

x0

x1

contains initial state
((0, 0) for instance)

x0

x1

is stable in one step
(loop body)

4 / 18
Computing Quadratic Invariants

N

Invariants
A set of points is an (inductive) invariant if it:

x0

x1

contains initial state
((0, 0) for instance)

x0

x1

is stable in one step
(loop body)

4 / 18
Computing Quadratic Invariants

N

Example

On following code:
x0 := 0; x1 := 0; x2 := 0;
while −1 ≤ 0 do

in := ?(−1, 1);
x0’ := x0; x1’ := x1; x2’ := x2;
x0 := 0.9379 x0’−0.0381 x1’−0.0414 x2’+0.0237 in;
x1 := −0.0404 x0’+0.968 x1’−0.0179 x2’+0.0143 in;
x2 := 0.0142 x0’−0.0197 x1’+0.9823 x2’+0.0077 in;

od
our tool automatically proves:
|x0| ≤ 0.4236 ∧ |x1| ≤ 0.3371 ∧ |x2| ≤ 0.5251

by producing the invariant:
6.2547x2

0 + 12.1868x2
1 + 3.8775x2

2 − 10.61x0x1 − 2.4306x0x2 + 2.4182x1x2 ≤ 1.0029
∧ x2

0 ≤ 0.1795 ∧ x2
1 ≤ 0.1136 ∧ x2

2 ≤ 0.2757.

5 / 18
Computing Quadratic Invariants

N

Example

On following code:
x0 := 0; x1 := 0; x2 := 0;
while −1 ≤ 0 do

in := ?(−1, 1);
x0’ := x0; x1’ := x1; x2’ := x2;
x0 := 0.9379 x0’−0.0381 x1’−0.0414 x2’+0.0237 in;
x1 := −0.0404 x0’+0.968 x1’−0.0179 x2’+0.0143 in;
x2 := 0.0142 x0’−0.0197 x1’+0.9823 x2’+0.0077 in;

od
our tool automatically proves:
|x0| ≤ 0.4236 ∧ |x1| ≤ 0.3371 ∧ |x2| ≤ 0.5251

by producing the invariant:
6.2547x2

0 + 12.1868x2
1 + 3.8775x2

2 − 10.61x0x1 − 2.4306x0x2 + 2.4182x1x2 ≤ 1.0029
∧ x2

0 ≤ 0.1795 ∧ x2
1 ≤ 0.1136 ∧ x2

2 ≤ 0.2757.

5 / 18
Computing Quadratic Invariants

N

Quadratic invariants

Linear invariants commonly used in static analysis
are not well suited:

at best costly;
at worst no result.

Control theorists know for long that quadratic invariants
are a good fit for linear systems.

x0

x1

x0

x1

6 / 18
Computing Quadratic Invariants

N

Quadratic invariants

Linear invariants commonly used in static analysis
are not well suited:

at best costly;
at worst no result.

Control theorists know for long that quadratic invariants
are a good fit for linear systems.

x0

x1

x0

x1

6 / 18
Computing Quadratic Invariants

N

Quadratic invariants

Linear invariants commonly used in static analysis
are not well suited:

at best costly;
at worst no result.

Control theorists know for long that quadratic invariants
are a good fit for linear systems.

x0

x1

x0

x1

6 / 18
Computing Quadratic Invariants

N

Quadratic invariants

Linear invariants commonly used in static analysis
are not well suited:

at best costly;
at worst no result.

Control theorists know for long that quadratic invariants
are a good fit for linear systems.

x0

x1

x0

x1

6 / 18
Computing Quadratic Invariants

N

Quadratic invariants

Linear invariants commonly used in static analysis
are not well suited:

at best costly;
at worst no result.

Control theorists know for long that quadratic invariants
are a good fit for linear systems.

x0

x1

x0

x1

6 / 18
Computing Quadratic Invariants

N

Quadratic Invariants
Remark
Reachable state space is usually not an ellipsoid.

Example
x0 := 0 and xk+1 := Axk + Buk where ‖uk‖∞ ≤ 1 and

A :=
[
0.92565 −0.0935
0.00935 0.935

]
B :=

[
1
0

]

x0

x1

But remains reasonably close.

7 / 18
Computing Quadratic Invariants

N

Quadratic Invariants
Remark
Reachable state space is usually not an ellipsoid.

Example
x0 := 0 and xk+1 := Axk + Buk where ‖uk‖∞ ≤ 1 and

A :=
[
0.92565 −0.0935
0.00935 0.935

]
B :=

[
1
0

]

x0

x1

But remains reasonably close.

7 / 18
Computing Quadratic Invariants

N

Quadratic Invariants
Remark
Reachable state space is usually not an ellipsoid.

Example
x0 := 0 and xk+1 := Axk + Buk where ‖uk‖∞ ≤ 1 and

A :=
[
0.92565 −0.0935
0.00935 0.935

]
B :=

[
1
0

]

x0

x1

But remains reasonably close.

7 / 18
Computing Quadratic Invariants

N

Lyapunov Stability

Theorem
For A ∈ Rn×n, B ∈ Rn×p, the sequence

{
x0 ∈ Rn

xk+1 = Axk + Buk

is bounded for all u ∈ (Rp)N such that for all k ∈ N, ||uk ||∞ ≤ 1
if and only if there exists P ∈ Rn×n positive definite such that

P − AT P A � 0

where M � 0 means that for all x ∈ Rn: x 6= 0⇒ xT M x > 0.

8 / 18
Computing Quadratic Invariants

N

Lyapunov Stability, Invariant

Invariant ellipsoid
Moreover, there exists a λ > 0 such that
x remains in the ellipsoid

{
x ∈ Rn

∣∣∣ xT P x ≤ λ
}
.

In Computer Science Language
The property “xT P x ≤ λ” is a loop invariant.

9 / 18
Computing Quadratic Invariants

N

Lyapunov Stability, Illustration
{

x
∣∣∣ xT Px ≤ λ

}

{
Ax

∣∣∣ xT Px ≤ λ
} {Axk + Buk | ||uk ||∞ ≤ 1}

xk

Axk

10 / 18
Computing Quadratic Invariants

N

Tools
To solve the Lyapunov equation P − AT P A � 0:

Semidefinite Programming
Minimize linear objective function of variables yi
under constraint

A0 +
k∑

i=1
yiAi � 0

the Ai are known matrices
and M � 0 means xT M x ≥ 0 for all vector x .

“Efficient” solvers exist;

Unknown matrices: Y can be decomposed as
∑

i,j
yi,jE i,j ;

⇒ Lyapunov equation is numerically solvable.

11 / 18
Computing Quadratic Invariants

N

Tools
To solve the Lyapunov equation P − AT P A � 0:

Semidefinite Programming
Minimize linear objective function of variables yi
under constraint

A0 +
k∑

i=1
yiAi � 0

the Ai are known matrices
and M � 0 means xT M x ≥ 0 for all vector x .

“Efficient” solvers exist;
Unknown matrices: Y can be decomposed as

∑

i,j
yi,jE i,j ;

⇒ Lyapunov equation is numerically solvable.

11 / 18
Computing Quadratic Invariants

N

Tools
To solve the Lyapunov equation P − AT P A � 0:

Semidefinite Programming
Minimize linear objective function of variables yi
under constraint

A0 +
k∑

i=1
yiAi � 0

the Ai are known matrices
and M � 0 means xT M x ≥ 0 for all vector x .

“Efficient” solvers exist;
Unknown matrices: Y can be decomposed as

∑

i,j
yi,jE i,j ;

⇒ Lyapunov equation is numerically solvable.

11 / 18
Computing Quadratic Invariants

N

Shape of the Ellipsoid

We look for P � 0 such that P − AT P A � 0.

Then for λ such that xT P x ≤ λ is invariant.
The ellipsoid

{
x
∣∣ xT P x ≤ λ

}
should be “small”.

x0

x1

is better than

x0

x1

⇒ various heuristics tried.

12 / 18
Computing Quadratic Invariants

N

Shape of the Ellipsoid

We look for P � 0 such that P − AT P A � 0.
Then for λ such that xT P x ≤ λ is invariant.
The ellipsoid

{
x
∣∣ xT P x ≤ λ

}
should be “small”.

x0

x1

is better than

x0

x1

⇒ various heuristics tried.

12 / 18
Computing Quadratic Invariants

N

Example

1 (condition number)

2 (preserving shape)

3 (in smallest sphere)

13 / 18
Computing Quadratic Invariants

N

Experimental Results
H. Bounds Reachable

Ex. 2
n=4, 1 input

1 1661, 1795, 843, 1288
1.42, 1.42, 1.00, 1.002 5.50, 6.71, 2.20, 3.44

3 1.69, 1.92, 2.13, 2.42
Ex. 3 Lead-lag
controller
n=2, 1 input

1 60.93, 60.52
3.97, 20.002 36.55, 35.50

3 28.83, 25.85
Ex. 4 LQG
regulator
n=3, 1 input

1 1.26, 1.26, 1.26
0.32, 0.24, 0.222 1.21, 1.23, 1.06

3 0.68, 0.41, 0.28
Ex. 5 Coupled
mass system
n=4, 2 inputs

1 4980, 5061, 4768, 5693
2.79, 2.73, 3.50, 3.302 6.37, 6.20, 6.07, 9.57

3 4.97, 4.90, 4.77, 4.63
Ex. 6
Low-pass filter
n=5, 1 input

1 253, 261, 251, 280, 286
1.42, 0.91, 1.44, 1.52, 2.142 3.11, 4.30, 4.15, 8.16, 8.81

3 2.21, 1.10, 1.87, 1.98, 2.83
14 / 18

Computing Quadratic Invariants
N

Experimental Results, Analysis Times
Heuristic tP (s) tλ (s) tvalid . (s) ttotal (s)

Ex. 2
n=4, 1 input

1 0.10 0.63 0.02 0.75
2 0.21 0.37 0.01 0.59
3 0.33 0.22 0.01 0.56

Ex. 3 Discretized
lead-lag controller
n=2, 1 input

1 0.08 0.47 0.03 0.60
2 0.13 0.45 0.02 0.60
3 0.16 0.21 0.02 0.39

Ex. 4 Linear quadratic
gaussian regulator
n=3, 1 input

1 0.08 0.33 0.02 0.43
2 0.14 0.29 0.02 0.45
3 0.16 0.22 0.02 0.40

Ex. 5 Controller for a
coupled mass system
n=4, 2 inputs

1 0.09 0.76 0.03 0.88
2 0.17 0.43 0.03 0.63
3 0.27 0.23 0.03 0.53

Ex. 6 Butterworth
low-pass filter
n=5, 1 input

1 0.11 0.65 0.03 0.79
2 0.22 0.37 0.02 0.61
3 0.56 0.25 0.02 0.83

On an Intel Core2 @ 2.66GHz.
15 / 18

Computing Quadratic Invariants
N

Floating Point Issues
For efficiency, use of floating point arithmetic, ⇒ rounding errors:

In the analyzer:

Checking invariant
{

x
∣∣ xT Px ≤ λ

}
amounts to

positive definiteness of (for some τ ≥ 0 and λi ≥ 0):



−AT PA −AT PB 0
−BT PA −BT PB 0

0 0 λ


−τ

[−P 0 0
0 0 0
0 0 λ

]
−

p−1∑

i=0

λi



0 0 0
0 −E i,i 0
0 0 1


 .

Done by bounding rounding errors in a Cholesky decomposition.

Hence an efficient soundness check
(in O

(
n3) floating point operations for an n × n matrix).

Proved in COQ (paper proof: 6 pages 3,8 kloc of COQ).

16 / 18
Computing Quadratic Invariants

N

Floating Point Issues
For efficiency, use of floating point arithmetic, ⇒ rounding errors:

In the analyzer:

Checking invariant
{

x
∣∣ xT Px ≤ λ

}
amounts to

positive definiteness of (for some τ ≥ 0 and λi ≥ 0):



−AT PA −AT PB 0
−BT PA −BT PB 0

0 0 λ


−τ

[−P 0 0
0 0 0
0 0 λ

]
−

p−1∑

i=0

λi



0 0 0
0 −E i,i 0
0 0 1


 .

Done by bounding rounding errors in a Cholesky decomposition.

Hence an efficient soundness check
(in O

(
n3) floating point operations for an n × n matrix).

Proved in COQ (paper proof: 6 pages 3,8 kloc of COQ).

16 / 18
Computing Quadratic Invariants

N

Floating Point Issues

In the analyzed controller:

Theorem
If xT Px ≤ λ, ‖u‖∞ ≤ 1 and (Ax + Bu)T P(Ax + Bu) ≤ λ′, then

fl(Ax + Bu)T P fl(Ax + Bu) ≤
(√

λ′ +
√
λa + b

)2

with a and b (very small) constants computed from A, B and P.

Proved in COQ (paper proof: 4 pages 3,2 kloc of COQ).

17 / 18
Computing Quadratic Invariants

N

Open Directions

Invariant generation:
Handling disjunctions in loop (e.g., saturations,
sometimes already works with policy iterations).
Polynomial invariants.

Closed loop system.

Other properties of interest for control theorists:
Robustness (generalization of phase and gain margins).
Performance (overshoot, convergence speed).

18 / 18
Computing Quadratic Invariants

N

Questions

Thank you for your attention!

?
19 / 19

Computing Quadratic Invariants
N

