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Overview 

•  Background  
•  Verification and Certification 
•  Aircraft self-separation   
•  Runtime verification 
•  Formal-Methods for numerical software 
•  Experimental research 
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NASA Langley 

•  LaRC created in 1917 as the first National Advisory 
Committee for Aeronautics (NACA) research facility 
–  Located in Hampton, Virginia 
–  Primarily R&D focus    

•  LaRC became a NASA lab in 1958  
–  The Mercury program began at LaRC  

•  Research areas of focus: Aeronautics, Atmospheric 
Sciences, and Exploration  
–  Aerospace engineers dominate the research culture  

•  I belong to Safety-Critical Avionics Systems Branch 
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NASA R&D in Formal Methods 

•  NASA Langley Research Center (LARC) - Safety 
Critical Avionics Systems Branch 
–  Fault-tolerance 
–  Air Traffic management  
–  Theorem proving 

•  NASA Ames Research Center (ARC) – Robust 
Software Engineering Group 
–  Model Checking 
–  Static analysis  

•  Jet Propulsion Laboratory (JPL) – Laboratory for 
Reliable Software 
–  Mission oriented  
–  Mars rover software 
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VERIFICATION & CERTIFICATION 
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So, You Want to Build a Commercial 
Aircraft? 

•  Form a startup and start hacking - just like silicon valley right? 
–  Not so fast! 

•  Process starts off with a notification of intent to the FAA 
–  A minuet begins between the company and the regulators 
–  For a Part 25 aircraft they will tell you over 1500 safety criteria you 

must meet 
•  Autos and medical devices are easy in comparison 
•  DoD aircraft not subject to these regulations 

•  The Federal Aviation Administration (FAA) must certify the 
aircraft 
–  Designated Engineering Representative  (DER)  

•  The cyber-physical component is one of the largest risk 
factors   

•  Verification ≠ Certification 
–  Safety is a systems level property 



Ultra-Reliability is Hard  

We are very good at building complex software systems that work 95% 
of the time---but, we do not know how to build complex software 
systems that are ultra-reliable and safe.  

   What, then has saved us in the past? 
– minimal amount of software that is safety critical 
– simple designs 
– Enormously-expensive verification and certification processes 
– backups that are not software, e.g.  

°  hardware interlocks 
°  human intervention 
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Software and Safety 

•  Critical avionics software is typically controlling 
some aspect of the aircraft  
–  Control surfaces, fuel, …  

•  System must continue to operate safely in the 
presence of hardware failures  
–  Byzantine faults are a reality in this environment  

•  Systems must be engineered to be be safe 
–  Human is a critical component  

•  Burden to handle the added complexity to ensure 
safety usually falls on the software and the humans 
in the cockpit  
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Guideline Documents  



Eliminating Common Mode Errors 

•  Independence – A concept to minimize the 
likelihood of common mode and cascade errors   

•  Diversity 
–  HW, SW,  

•  Redundancy  
–  Triple redundancy  
–  Com/Mon 

•  Can mix techniques 
–  Dissimilar  com/mon  
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Formal Methods I  

•  Aerospace industry has used formal methods to 
analyze architectural properties of designs  
–  TTE protocols 

•  Existing certification regime very process/test 
oriented 

•  DO-333 is an RTCA standard allowing formal 
methods to replace unit test for evidence 
–  Standard explicitly mentions: syntax, semantics, 

soundness 
–  Still resolving tool qualification questions 



Formal Methods II 

•  Need much more work on languages and tools for 
specifying and analyzing architectures and designs 
of complex distributed hard real-time systems 
–  Industry typically ignores the semantics until too late 

•  Avionics software much more restrictive than most 
commercial software 
–  No recursion 
–  No dynamic memory allocation allowed 
–  Real-time scheduling issues always an issue 
–  Lots of numerical code 

•  Most existing static analysis efforts not focused on 
this class of code 
–  Very small market 
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Certification I  

•  Certification authorities certify an aircraft as a whole 
–  You build everything in conformance to standards and 

processes  
–  DERs sign off every step of the way  
–  No provision for certification by composition of certified 

modules 

•  Why? 
•  Hint: Certification is about safety 
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Certification II 

•  Safety is not a compositional property  
•  Can assume/guarantee reasoning help? 

–  Assumptions must include a fault model 
–  How does system behave when assumptions fail 

•  Little work has been done in identifying the hurdles 
for modular certification  
–  Rushby “Modular Certification” 

•  Challenge lies in the intersection of formal 
verification, fault tolerance, and safety-engineering  
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SELF SEPARATION CONCEPT 
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Aircraft Separation   

•  NASA is investigating a variety of air traffic management concepts to 
look at increasing capacity, efficiency, flexibility, etc. 

•  Adding more controllers will not achieve gains in these parameters 
•  Enabled by Automatic Dependent Surveillance Broadcast (ADS-B) 
•  Idea is to place more information in the hands of the pilots and trust 

them to make the right decision  
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Safe Self Separation 

•  More automation doesn’t remove safety issues, but 
simply shifts the risk from people to automation 

•  Simulation helps find bugs  
•  Formal methods help show correctness 
•  Automated tools such as model checking and SMT 

solvers of little use due to lots of continuous math 
•  Interactive theorem proving is required  
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Self Separation Concept 
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Separation and Automation 
•  Collision	  

–  Scrape	  paint	  
–  Avoid	  through	  pilot,	  controller,	  and	  TCAS	  

•  Loss	  of	  Separa9on	  
–  Separa9on	  standards	  are	  violated	  	  	  	  (5nmi,	  

1000?)	   	  	  
–  Avoid	  through	  human	  and/or	  automa9on	  

decisions	  	  	  	  	  

•  Conflict	  
–  Predicted	  loss	  of	  separa9on	  
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Separation Algorithms 

Conflict	  Detec9on	  
–  Detect	  future	  loss	  of	  

separa9on	  

Conflict	  Resolu9on	  
–  Suggest	  maneuvers	  to	  

resolve	  a	  conflict	  
	  

? 

Conflict Prevention 
–  Provides ranges of  

conflict-free and conflict 
prone  maneuvers 
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Recovery Algorithms 

Loss	  of	  Separa9on	  Recovery	  
–  For	  a	  variety	  of	  reasons	  

separa9on	  may	  be	  lost	  
–  Suggest	  a	  maneuver	  to	  regain	  

separa9on	  

	  

Conflict Recovery 
–  Suggest maneuvers to 

regain desired path 
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Conflict Resolution 

•  Each	  aircra?	  determines	  its	  own	  
maneuvers	  through	  a	  
combina9on	  of:	  
–  Go	  right/le?,	  Speed	  up/slow	  down,	  

Go	  up/down	  
•  Proper9es	  

–  Independence:	  free	  of	  conflicts	  if	  
one	  aircra?	  maneuvers	  	  

–  Coordina9on:	  free	  of	  conflicts	  if	  
both	  aircra?	  maneuver	  

•  Requirements	  
–  No	  specific	  comm	  between	  aircra?	  
–  No	  unfair	  rules:	  lower	  aircra?	  ID	  

goes	  first,	  etc.	  
	  

Uh, oh… 
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Formal Statement of Properties 
 independent: THEOREM   
    precondition_ind?(s(a), s(b), v(a), v(b)) AND 
    (nva = cr3d_vertical_speed(a,b) OR  
     nva = cr3d_ground_speed(a,b) OR  
     nva = cr3d_heading(a,b)) AND 
   IMPLIES 
      NOT conflict?(s(a),s(b),nva-v(b)) 
 
coordinated: THEOREM   
    precondition_coord?(s(a), s(b), v(a), v(b)) AND 
    (nva = cr3d_vertical_speed(a,b) OR  
     nva = cr3d_ground_speed(a,b) OR  
     nva = cr3d_heading(a,b)) AND 
    (nvb = cr3d_vertical_speed(b,a) OR  
     nvb = cr3d_ground_speed(b,a) OR  
     nvb = cr3d_heading(b,a)) 
    IMPLIES 
      NOT conflict?(s(a),s(b),nva-nvb) 
 



ACCoRD Framework 

•   Airborne Coordinated Conflict Resolution and Detection 
(ACCoRD) – a verification framework for classes of 
separation algorithms 
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Complex proof that criteria is 
safe 
-- provided by ACCoRD 

(Hopefully) 
straightforward 
proofs that each 
algorithm 
satisfies the 
criteria 
 



Criteria is Very General 

•  The criteria was developed to aid the 
verification process 

•  Criteria allows combination of horizontal and 
vertical maneuvers   

•  But even more, if different algorithms satisfy 
the criteria, then they will be coordinated with 
each other 

•  Self separation does not rely on everyone 
running the same algorithm! 



Criteria  

	  
	  
	  	  	  (s•	  v’)	  ≥	  ε	  	  R	  (s┴	  •	  v’)	  	  	  

	  
	  
	  	  s	  •	  v’	  >	  s	  •	  v	  	  	  AND	  	  
	  	  s	  •	  v’	  ≥	  ||s||	  (D	  -‐	  ||S||)/Th	  

	  	  	  
	  	  	  	  	  Δ	  >	  0	  AND	  t	  >	  0	  	  AND	  	  
	  	  	  	  	  δ	  =	  1	  AND	  	  sz	  vz	  ≥	  0	  
	  OR	  
	  	  	  	  	  |	  sz	  +	  t	  vz	  |	  ≥	  H	  	  	  AND	  	  
	  	  	  	  	  δ	  (sz	  +	  t	  vz)	  vz	  ≤	  0	  

vz’	  ≠	  0	  AND	  sz	  vz’	  ≥	  0	  AND	  
sz	  vz	  ≥	  0	  ==>	  
	  	  	  	  if	  vz	  =	  0	  then	  	  
	  	  	  	  	  	  	  	  break_symm(s)(vz’)	  >	  0	  	  	  
	  	  	  	  else	  
	  	  	  	  	  	  	  	  sign(vz)	  vz’	  ≥	  0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  

horizontal 

vertical 

in Conflict in Loss of Separation 



RUNTIME VERIFICATION  
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Autonomy Research for Civil Aviation: 
Toward a New Era of Flight 

The committee did not individually prioritize these 
barriers. However, there is one critical, crosscutting 
challenge that must be overcome to unleash the full 
potential of advanced increasingly autonomous  (IA) 
systems in civil aviation. This challenge may be 
described in terms of the question “How can we assure 
that advanced IA systems—especially those systems 
that rely on adaptive/nondeterministic software—will 
enhance rather than diminish the safety and reliability of 
the NAS?” There are four particularly challenging 
barriers that stand in the way of meeting this key 
challenge: 
• Certification process 
• Decision making by adaptive/nondeterministic systems 
• Trust in adaptive/nondeterministic IA systems 
• Verification and validation 

National Research Council 
Autonomy Research for Civil 
Aviation: Toward a New Era 
of Flight. Washington, DC: 
The National Academies 
Press, 2014 



Runtime Verification Motivation  

•  Given the current state-of-the-art not all code can 
be formally verified  
–  Code base too large 
–  Complex logic 

•  Learning algorithms are a particular challenge 
•  How do we ensure that assumptions that underline 

safety are actually correct  
•  Runtime Verification part of the solution 
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Runtime Verification  

•  System under observation (SUO) 
•  Correctness property φ 

–  Past-time temporal logic 
–  Regular languages  

•  Monitors observe SUO and detect violations of φ 
•  Accept all traces admitting φ 
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Runtime Verification in Copilot 

•  Copilot is a runtime verification framework aimed at 
hard real-time systems 
–  Co-developed by Lee Pike at Galois and myself 
–  Many Haskell hackers: Robin Moriset, Nis Wegmann,  

Sebastian Niller, Jonathan Laurent  

•  Written as a Haskell EDSL  
•  Composed of approximately 3000 lines of Haskell  
•  Copilot type system is embedded in Haskell’s 

–  Hindley-Milner extended with type classes  

•  Translates into C99 through Atom or SBV 
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Copilot Architecture  
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Copilot Libraries 
Copilot Language

Interpreter Copilot Core Pretty Printer

Atom Back-End SBV Back-End

C99 C99

Copilot Kind

Evaluation

TranslationQuickCheck

Model Checking

Compilation Compilation

Reification and 
DSL-specific

type-checking



Copilot Language Operators 

•  Stream language – constants and arithmetic 
operations are lifted to stream level 

•  (++) :: [a] -> Stream a -> Stream a 
•  xs ++   s    - prepends list xs to stream s 

•  drop :: Int -> Stream a -> Stream a 
•  drop  n s  - skips the first n values in the stream 

•  Copilot specs must be causal – stream values 
cannot depend on future values 
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Sample Copilot Specification 

Haskell 
   fib :: [Word32] 
    fib = [0,1] ++ zipWith (+)  (drop 1 fib) 
 
  Copilot  
      fib :: Stream Word32 
      fib = [0,1] ++ (fib + drop 1 fib) 
 
   Special constructs for input (sampling) and output 

(triggers) 
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Triggers 
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•  Triggers	  provide	  a	  mechanism	  for	  Copilot	  streams	  to	  

affect	  the	  outside	  world	  	  
•  trigger::	  String	  -‐>	  Steam	  Bool	  -‐>	  [TriggerArg]	  -‐>	  Spec	  

–  Name	  of	  external	  func9on	  
–  Guard	  determining	  when	  trigger	  is	  executed	  
–  List	  of	  arguments	  passed	  to	  the	  trigger	  



Trigger Example I 

•  If the temperature rises more than 2.3 degrees 
within 0.2 seconds, then the fuel injector should not 
be running 

•   Assuming that the global samplerate is 0.1 seconds 
 
propTempRiseShutOff :: Spec 
 propTempRiseShutOff = 
      trigger "over_temp_rise”   
        (overTempRise && running) [] 
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Trigger Example II 

where 
     max = 500 -- maximum engine temperature   
     temps :: Stream Float 
      temps = [max, max, max] ++ temp 
      temp = extern "temp" Nothing 
      overTempRise :: Stream Bool 
      overTempRise = drop 2 temps > (2.3 + temps)      
      running :: Stream Bool 
      running = extern "running" Nothing 
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Watching the Watchers 

•  Lightweight verification techniques applied to 
ensure the generated code is safe and correct 
–  Model checking 
–  Quick check 

•  SMT-based model checking applied to verify 
monitor properties   
–  U of Iowa’s Kind2 new IC3 based model checker employed 
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Copilot Experiments  

	  	  	  	  Tasks	  

•  Use	  monitors	  with	  custom	  
HW	  to	  bolt	  on	  fault	  
tolerance	  	  

•  Flight	  tests	  to	  validate	  
concept	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Edge	  
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Future Research  

•  Flight Control software running on RTOS 
–  Explore scheduling and architectures  
–  Reachability analysis to derive monitors 

•  Simplex architectures that we can certify 
•  Monitor assumptions that underline safety cases 
•  Runtime verification applied to geofencing    
•  Using Copilot to verify autonomous software  
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VERIFICATION OF 
NUMERICAL SOFTWARE  
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From Models to Programs 

•  Our models and proofs on aircraft separation are 
carried out on real numbers in PVS 

•  Computers running on aircraft do not execute exact 
real arithmetic! 

•  A theorem that depends on exact mathematical 
analysis may fail to hold in the inexact realm of 
floating point numbers 

•  Recent effort to focus on these issues 
–  A different perspective than our scientific computing and 

numerical analysis experts 
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Frama-C   

•  Frama-C is an OCAML-based platform for the static 
analysis of C programs developed at CEA 

•  Frama-C uses external decision procedures to 
prove ACSL annotations of C functions 

•  WP is a plug-in named for Dijkstra’s Weakest 
Precondition calculus for deductive verification of 
programs 

•  Epsilon is an new project to add special functionality 
to WP to analyze numerical programs 
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Separation of Concerns 

•  Verify the functional correctness of air traffic 
management algorithms  in PVS 
–  Higer-Order Logic  
–  Reasoning over R 

•  Implement the algorithm in C  
•  Annotate the code using ACSL 

–  First-Order logic  

•  Use Frama-C deductive verification tool to prove 
numerical error bounds on operations preserve 
safety argument 
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Frama-C Specification + Code 

/*@ logic real tauR(real ux, real uy, real vx, real vy, real b, real t) =  
  @   dmin(dmax(b*sqvR(vx,vy), - dotR(ux,uy,     vx,vy)),   t*sqvR(vx, vy)) ; @*/ 
/*@ requires -185200. <= s_x <= 185200. && -185200. <= s_y <= 185200. &&  
  @                -308. <= v_x <= 308. && -308. <= v_y <= 308. ; 
  @ ensures  \abs(\result - tauR(s_x, s_y, v_x, v_y, Br, Tr)) <= 0x1.p-8;  @*/ 
 
 
double tau_vv(double s_x, double s_y, double v_x, double v_y) 
        { return min(max((Br-epb)*sqv(v_x,v_y),  
                   - dot(s_x,s_y, v_x, v_y)), (Tr+ept)*sqv(v_x, v_y));} 
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Epsilon 

•  Represent floating point values as intervals  
–  Applied interval analysis  

•  Represent numbers as finite sum of powers of 2 
•  Keep track of relative error and absolute error at 

each operation  
•  We want to use static analysis techniques to 

estimate the error  
•  Apply techniques from abstract interpretation to the 

logical specification 
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EXPERIMENTS  
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Edge 540T UAS Test Bed 
•  Initial development funded by  

ARMD/IVHM now ARMD/SSAT 
•  Battery health prognosis 
•  Software health 
•  Autonomous decision system algorithms 

•  Current Capability: 
•   Autopilot – flight plan following 
•  Battery prognostics algorithms 
•  ADS-B IN/OUT 
•  Air traffic conflict detection and resolution 

 
•  Available Data: 

•  Airframe parameters 
•  Power plant parameters 
•  INS/GPS 
•  ADSB IN traffic table 
 

•  Advantages:  
•  Low cost vehicle suitable for high risk avionics algorithm and hardware testing.   
•  Low cost air traffic scenario flight testing. 
•  Minimal ground support hardware requirements. 
•  Environment for testing decision algorithms for space applications. 

FAA registered LaRC 8’ UAS: 
“N802RE” 

Soon to be registered: “N803RE” 

~ $20k per copy 
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Test Concept 

•  Air	  space	  conflict	  con9ngency	  –	  Self	  separated	  flight	  
based	  on	  ship-‐to-‐ship	  ADS-‐B.	  

•  Own-‐ship	  health	  con9ngency	  –	  evaluate	  mission	  
alterna9ves	  based	  on	  current	  and	  projected	  own-‐
ship	  constraints.	  

•  Demonstrate	  simplified	  UAS	  architecture	  in	  mul9-‐
vehicle	  traffic	  conflict	  scenarios	  

•  Flight	  rules	  valida9on	  in	  part	  flight/part	  simula9on	  
environment	  	  

Research	  Objec5ves	  

ADS-‐B	  UAT	  Link	  

ADSB	  Emula9on	  
over	  XBee	  
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Questions? 


