
Alwyn Goodloe
NASA Langley Research Center

Research in the Verification
of Flight-Critical Systems

Overview

•  Background
•  Verification and Certification
•  Aircraft self-separation
•  Runtime verification
•  Formal-Methods for numerical software
•  Experimental research

2

NASA Langley

•  LaRC created in 1917 as the first National Advisory
Committee for Aeronautics (NACA) research facility
–  Located in Hampton, Virginia
–  Primarily R&D focus

•  LaRC became a NASA lab in 1958
–  The Mercury program began at LaRC

•  Research areas of focus: Aeronautics, Atmospheric
Sciences, and Exploration
–  Aerospace engineers dominate the research culture

•  I belong to Safety-Critical Avionics Systems Branch

3

NASA R&D in Formal Methods

•  NASA Langley Research Center (LARC) - Safety
Critical Avionics Systems Branch
–  Fault-tolerance
–  Air Traffic management
–  Theorem proving

•  NASA Ames Research Center (ARC) – Robust
Software Engineering Group
–  Model Checking
–  Static analysis

•  Jet Propulsion Laboratory (JPL) – Laboratory for
Reliable Software
–  Mission oriented
–  Mars rover software

4

VERIFICATION & CERTIFICATION

5

So, You Want to Build a Commercial
Aircraft?

•  Form a startup and start hacking - just like silicon valley right?
–  Not so fast!

•  Process starts off with a notification of intent to the FAA
–  A minuet begins between the company and the regulators
–  For a Part 25 aircraft they will tell you over 1500 safety criteria you

must meet
•  Autos and medical devices are easy in comparison
•  DoD aircraft not subject to these regulations

•  The Federal Aviation Administration (FAA) must certify the
aircraft
–  Designated Engineering Representative (DER)

•  The cyber-physical component is one of the largest risk
factors

•  Verification ≠ Certification
–  Safety is a systems level property

Ultra-Reliability is Hard

We are very good at building complex software systems that work 95%
of the time---but, we do not know how to build complex software
systems that are ultra-reliable and safe.

 What, then has saved us in the past?
– minimal amount of software that is safety critical
– simple designs
– Enormously-expensive verification and certification processes
– backups that are not software, e.g.

°  hardware interlocks
°  human intervention

0
747-200

757/767

747-400

777
All sectors of
aerospace are
increasingly relying
on software to
perform safety-
critical functions

Size and
Complexity

Software and Safety

•  Critical avionics software is typically controlling
some aspect of the aircraft
–  Control surfaces, fuel, …

•  System must continue to operate safely in the
presence of hardware failures
–  Byzantine faults are a reality in this environment

•  Systems must be engineered to be be safe
–  Human is a critical component

•  Burden to handle the added complexity to ensure
safety usually falls on the software and the humans
in the cockpit

8

Guideline Documents

Eliminating Common Mode Errors

•  Independence – A concept to minimize the
likelihood of common mode and cascade errors

•  Diversity
–  HW, SW,

•  Redundancy
–  Triple redundancy
–  Com/Mon

•  Can mix techniques
–  Dissimilar com/mon

10

Formal Methods I

•  Aerospace industry has used formal methods to
analyze architectural properties of designs
–  TTE protocols

•  Existing certification regime very process/test
oriented

•  DO-333 is an RTCA standard allowing formal
methods to replace unit test for evidence
–  Standard explicitly mentions: syntax, semantics,

soundness
–  Still resolving tool qualification questions

Formal Methods II

•  Need much more work on languages and tools for
specifying and analyzing architectures and designs
of complex distributed hard real-time systems
–  Industry typically ignores the semantics until too late

•  Avionics software much more restrictive than most
commercial software
–  No recursion
–  No dynamic memory allocation allowed
–  Real-time scheduling issues always an issue
–  Lots of numerical code

•  Most existing static analysis efforts not focused on
this class of code
–  Very small market

12

Certification I

•  Certification authorities certify an aircraft as a whole
–  You build everything in conformance to standards and

processes
–  DERs sign off every step of the way
–  No provision for certification by composition of certified

modules

•  Why?
•  Hint: Certification is about safety

13

Certification II

•  Safety is not a compositional property
•  Can assume/guarantee reasoning help?

–  Assumptions must include a fault model
–  How does system behave when assumptions fail

•  Little work has been done in identifying the hurdles
for modular certification
–  Rushby “Modular Certification”

•  Challenge lies in the intersection of formal
verification, fault tolerance, and safety-engineering

14

SELF SEPARATION CONCEPT

15

Aircraft Separation

•  NASA is investigating a variety of air traffic management concepts to
look at increasing capacity, efficiency, flexibility, etc.

•  Adding more controllers will not achieve gains in these parameters
•  Enabled by Automatic Dependent Surveillance Broadcast (ADS-B)
•  Idea is to place more information in the hands of the pilots and trust

them to make the right decision

16

Safe Self Separation

•  More automation doesn’t remove safety issues, but
simply shifts the risk from people to automation

•  Simulation helps find bugs
•  Formal methods help show correctness
•  Automated tools such as model checking and SMT

solvers of little use due to lots of continuous math
•  Interactive theorem proving is required

17

18

Self Separation Concept

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Ground managed

Airborne managed

19

Separation and Automation
•  Collision	

–  Scrape	 paint	
–  Avoid	 through	 pilot,	 controller,	 and	 TCAS	

•  Loss	 of	 Separa9on	
–  Separa9on	 standards	 are	 violated	 	 	 	 (5nmi,	

1000?)	 	 	
–  Avoid	 through	 human	 and/or	 automa9on	

decisions	 	 	 	 	

•  Conflict	
–  Predicted	 loss	 of	 separa9on	

20

Separation Algorithms

Conflict	 Detec9on	
–  Detect	 future	 loss	 of	

separa9on	

Conflict	 Resolu9on	
–  Suggest	 maneuvers	 to	

resolve	 a	 conflict	
	

?

Conflict Prevention
–  Provides ranges of

conflict-free and conflict
prone maneuvers

21

Recovery Algorithms

Loss	 of	 Separa9on	 Recovery	
–  For	 a	 variety	 of	 reasons	

separa9on	 may	 be	 lost	
–  Suggest	 a	 maneuver	 to	 regain	

separa9on	

	

Conflict Recovery
–  Suggest maneuvers to

regain desired path

22

Conflict Resolution

•  Each	 aircra?	 determines	 its	 own	
maneuvers	 through	 a	
combina9on	 of:	
–  Go	 right/le?,	 Speed	 up/slow	 down,	

Go	 up/down	
•  Proper9es	

–  Independence:	 free	 of	 conflicts	 if	
one	 aircra?	 maneuvers	 	

–  Coordina9on:	 free	 of	 conflicts	 if	
both	 aircra?	 maneuver	

•  Requirements	
–  No	 specific	 comm	 between	 aircra?	
–  No	 unfair	 rules:	 lower	 aircra?	 ID	

goes	 first,	 etc.	
	

Uh, oh…

23

Formal Statement of Properties
 independent: THEOREM
 precondition_ind?(s(a), s(b), v(a), v(b)) AND
 (nva = cr3d_vertical_speed(a,b) OR
 nva = cr3d_ground_speed(a,b) OR
 nva = cr3d_heading(a,b)) AND
 IMPLIES
 NOT conflict?(s(a),s(b),nva-v(b))

coordinated: THEOREM
 precondition_coord?(s(a), s(b), v(a), v(b)) AND
 (nva = cr3d_vertical_speed(a,b) OR
 nva = cr3d_ground_speed(a,b) OR
 nva = cr3d_heading(a,b)) AND
 (nvb = cr3d_vertical_speed(b,a) OR
 nvb = cr3d_ground_speed(b,a) OR
 nvb = cr3d_heading(b,a))
 IMPLIES
 NOT conflict?(s(a),s(b),nva-nvb)

ACCoRD Framework

•  Airborne Coordinated Conflict Resolution and Detection
(ACCoRD) – a verification framework for classes of
separation algorithms

24

Complex proof that criteria is
safe
-- provided by ACCoRD

(Hopefully)
straightforward
proofs that each
algorithm
satisfies the
criteria

Criteria is Very General

•  The criteria was developed to aid the
verification process

•  Criteria allows combination of horizontal and
vertical maneuvers

•  But even more, if different algorithms satisfy
the criteria, then they will be coordinated with
each other

•  Self separation does not rely on everyone
running the same algorithm!

Criteria

	
	
	 	 	 (s•	 v’)	 ≥	 ε	 	 R	 (s┴	 •	 v’)	 	 	

	
	
	 	 s	 •	 v’	 >	 s	 •	 v	 	 	 AND	 	
	 	 s	 •	 v’	 ≥	 ||s||	 (D	 -‐	 ||S||)/Th	

	 	 	
	 	 	 	 	 Δ	 >	 0	 AND	 t	 >	 0	 	 AND	 	
	 	 	 	 	 δ	 =	 1	 AND	 	 sz	 vz	 ≥	 0	
	 OR	
	 	 	 	 	 |	 sz	 +	 t	 vz	 |	 ≥	 H	 	 	 AND	 	
	 	 	 	 	 δ	 (sz	 +	 t	 vz)	 vz	 ≤	 0	

vz’	 ≠	 0	 AND	 sz	 vz’	 ≥	 0	 AND	
sz	 vz	 ≥	 0	 ==>	
	 	 	 	 if	 vz	 =	 0	 then	 	
	 	 	 	 	 	 	 	 break_symm(s)(vz’)	 >	 0	 	 	
	 	 	 	 else	
	 	 	 	 	 	 	 	 sign(vz)	 vz’	 ≥	 0	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

horizontal

vertical

in Conflict in Loss of Separation

RUNTIME VERIFICATION

27

Autonomy Research for Civil Aviation:
Toward a New Era of Flight

The committee did not individually prioritize these
barriers. However, there is one critical, crosscutting
challenge that must be overcome to unleash the full
potential of advanced increasingly autonomous (IA)
systems in civil aviation. This challenge may be
described in terms of the question “How can we assure
that advanced IA systems—especially those systems
that rely on adaptive/nondeterministic software—will
enhance rather than diminish the safety and reliability of
the NAS?” There are four particularly challenging
barriers that stand in the way of meeting this key
challenge:
• Certification process
• Decision making by adaptive/nondeterministic systems
• Trust in adaptive/nondeterministic IA systems
• Verification and validation

National Research Council
Autonomy Research for Civil
Aviation: Toward a New Era
of Flight. Washington, DC:
The National Academies
Press, 2014

Runtime Verification Motivation

•  Given the current state-of-the-art not all code can
be formally verified
–  Code base too large
–  Complex logic

•  Learning algorithms are a particular challenge
•  How do we ensure that assumptions that underline

safety are actually correct
•  Runtime Verification part of the solution

29

Runtime Verification

•  System under observation (SUO)
•  Correctness property φ

–  Past-time temporal logic
–  Regular languages

•  Monitors observe SUO and detect violations of φ
•  Accept all traces admitting φ

30

Runtime Verification in Copilot

•  Copilot is a runtime verification framework aimed at
hard real-time systems
–  Co-developed by Lee Pike at Galois and myself
–  Many Haskell hackers: Robin Moriset, Nis Wegmann,

Sebastian Niller, Jonathan Laurent

•  Written as a Haskell EDSL
•  Composed of approximately 3000 lines of Haskell
•  Copilot type system is embedded in Haskell’s

–  Hindley-Milner extended with type classes

•  Translates into C99 through Atom or SBV

31

Copilot Architecture

32

Copilot Libraries
Copilot Language

Interpreter Copilot Core Pretty Printer

Atom Back-End SBV Back-End

C99 C99

Copilot Kind

Evaluation

TranslationQuickCheck

Model Checking

Compilation Compilation

Reification and
DSL-specific

type-checking

Copilot Language Operators

•  Stream language – constants and arithmetic
operations are lifted to stream level

•  (++) :: [a] -> Stream a -> Stream a
•  xs ++ s - prepends list xs to stream s

•  drop :: Int -> Stream a -> Stream a
•  drop n s - skips the first n values in the stream

•  Copilot specs must be causal – stream values
cannot depend on future values

33

Sample Copilot Specification

Haskell
 fib :: [Word32]
 fib = [0,1] ++ zipWith (+) (drop 1 fib)

 Copilot
 fib :: Stream Word32
 fib = [0,1] ++ (fib + drop 1 fib)

 Special constructs for input (sampling) and output

(triggers)

34

Triggers

35

	
•  Triggers	 provide	 a	 mechanism	 for	 Copilot	 streams	 to	

affect	 the	 outside	 world	 	
•  trigger::	 String	 -‐>	 Steam	 Bool	 -‐>	 [TriggerArg]	 -‐>	 Spec	

–  Name	 of	 external	 func9on	
–  Guard	 determining	 when	 trigger	 is	 executed	
–  List	 of	 arguments	 passed	 to	 the	 trigger	

Trigger Example I

•  If the temperature rises more than 2.3 degrees
within 0.2 seconds, then the fuel injector should not
be running

•  Assuming that the global samplerate is 0.1 seconds

propTempRiseShutOff :: Spec
 propTempRiseShutOff =
 trigger "over_temp_rise”
 (overTempRise && running) []

36

Trigger Example II

where
 max = 500 -- maximum engine temperature
 temps :: Stream Float
 temps = [max, max, max] ++ temp
 temp = extern "temp" Nothing
 overTempRise :: Stream Bool
 overTempRise = drop 2 temps > (2.3 + temps)
 running :: Stream Bool
 running = extern "running" Nothing

37

Watching the Watchers

•  Lightweight verification techniques applied to
ensure the generated code is safe and correct
–  Model checking
–  Quick check

•  SMT-based model checking applied to verify
monitor properties
–  U of Iowa’s Kind2 new IC3 based model checker employed

38

Copilot Experiments

	 	 	 	 Tasks	

•  Use	 monitors	 with	 custom	
HW	 to	 bolt	 on	 fault	
tolerance	 	

•  Flight	 tests	 to	 validate	
concept	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Edge	

39

Future Research

•  Flight Control software running on RTOS
–  Explore scheduling and architectures
–  Reachability analysis to derive monitors

•  Simplex architectures that we can certify
•  Monitor assumptions that underline safety cases
•  Runtime verification applied to geofencing
•  Using Copilot to verify autonomous software

40

VERIFICATION OF
NUMERICAL SOFTWARE

41

From Models to Programs

•  Our models and proofs on aircraft separation are
carried out on real numbers in PVS

•  Computers running on aircraft do not execute exact
real arithmetic!

•  A theorem that depends on exact mathematical
analysis may fail to hold in the inexact realm of
floating point numbers

•  Recent effort to focus on these issues
–  A different perspective than our scientific computing and

numerical analysis experts

42

Frama-C

•  Frama-C is an OCAML-based platform for the static
analysis of C programs developed at CEA

•  Frama-C uses external decision procedures to
prove ACSL annotations of C functions

•  WP is a plug-in named for Dijkstra’s Weakest
Precondition calculus for deductive verification of
programs

•  Epsilon is an new project to add special functionality
to WP to analyze numerical programs

43

Separation of Concerns

•  Verify the functional correctness of air traffic
management algorithms in PVS
–  Higer-Order Logic
–  Reasoning over R

•  Implement the algorithm in C
•  Annotate the code using ACSL

–  First-Order logic

•  Use Frama-C deductive verification tool to prove
numerical error bounds on operations preserve
safety argument

44

Frama-C Specification + Code

/*@ logic real tauR(real ux, real uy, real vx, real vy, real b, real t) =
 @ dmin(dmax(b*sqvR(vx,vy), - dotR(ux,uy, vx,vy)), t*sqvR(vx, vy)) ; @*/
/*@ requires -185200. <= s_x <= 185200. && -185200. <= s_y <= 185200. &&
 @ -308. <= v_x <= 308. && -308. <= v_y <= 308. ;
 @ ensures \abs(\result - tauR(s_x, s_y, v_x, v_y, Br, Tr)) <= 0x1.p-8; @*/

double tau_vv(double s_x, double s_y, double v_x, double v_y)
 { return min(max((Br-epb)*sqv(v_x,v_y),
 - dot(s_x,s_y, v_x, v_y)), (Tr+ept)*sqv(v_x, v_y));}

45

Epsilon

•  Represent floating point values as intervals
–  Applied interval analysis

•  Represent numbers as finite sum of powers of 2
•  Keep track of relative error and absolute error at

each operation
•  We want to use static analysis techniques to

estimate the error
•  Apply techniques from abstract interpretation to the

logical specification

46

EXPERIMENTS

47

48

Edge 540T UAS Test Bed
•  Initial development funded by

ARMD/IVHM now ARMD/SSAT
•  Battery health prognosis
•  Software health
•  Autonomous decision system algorithms

•  Current Capability:
•  Autopilot – flight plan following
•  Battery prognostics algorithms
•  ADS-B IN/OUT
•  Air traffic conflict detection and resolution

•  Available Data:

•  Airframe parameters
•  Power plant parameters
•  INS/GPS
•  ADSB IN traffic table

•  Advantages:
•  Low cost vehicle suitable for high risk avionics algorithm and hardware testing.
•  Low cost air traffic scenario flight testing.
•  Minimal ground support hardware requirements.
•  Environment for testing decision algorithms for space applications.

FAA registered LaRC 8’ UAS:
“N802RE”

Soon to be registered: “N803RE”

~ $20k per copy

49

Test Concept

•  Air	 space	 conflict	 con9ngency	 –	 Self	 separated	 flight	
based	 on	 ship-‐to-‐ship	 ADS-‐B.	

•  Own-‐ship	 health	 con9ngency	 –	 evaluate	 mission	
alterna9ves	 based	 on	 current	 and	 projected	 own-‐
ship	 constraints.	

•  Demonstrate	 simplified	 UAS	 architecture	 in	 mul9-‐
vehicle	 traffic	 conflict	 scenarios	

•  Flight	 rules	 valida9on	 in	 part	 flight/part	 simula9on	
environment	 	

Research	 Objec5ves	

ADS-‐B	 UAT	 Link	

ADSB	 Emula9on	
over	 XBee	

50

Questions?

